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Research

Insulin resistance (IR) has been regarded as 
an important health issue because it affects 
the development of type 2 diabetes mellitus 
(DM) (Grattagliano et al. 2008; Marx 2002). 
The number of patients with DM has grown 
rapidly and is expected to continue to increase 
worldwide (Hoang et al. 2007; Marx 2002; 
Zarich 2006).

Recently, exposure to nitrogen dioxide 
(NO2) and proximity to roads (which serves as 
a proxy for traffic-related pollutant exposure) 
have been associated with DM (Brook et al. 
2008; Puett et al. 2011). This result raised the 
possibility that DM is affected directly by air 
pollution exposure in addition to being an 
effect modifier for air pollution–associated 
diseases (Bateson and Schwartz 2004; 
Dubowsky et al. 2006; Hathout et al. 2002; 
O’Neill et al. 2005; Peel et al. 2007; Zanobetti 
and Schwartz 2001). Correlations between air 
pollution and markers of IR have also been 
reported in a cross-sectional study of children 
(Kelishadi et al. 2009).

Recent research has suggested that oxida-
tive stress is a major biologic pathophysio
logical mechanism underlying the adverse 
health effects of air pollutants (Romieu et al. 
2010). Therefore, genes involved in oxida-
tive stress are logical candidates for studying 
air pollution × gene interactions. The human 
glutathione S-transferase genes are well-known 
oxidative stress–related detoxification enzymes. 
Deletions of the glutathione S-transferase M1 

(GSTM1) and T1 (GSTT1) genes lead to null 
phenotypes completely lacking enzyme func-
tion. A polymorphic site at codon 105 (A to 
G substitution, resulting in a change of iso
leucine to valine) of GST P1 alters enzyme-
binding kinetics for some electrophilic 
substrates (Zimniak et al. 1994). We hypothe
sized that GSTM1, GSTT1, and GSTP1 poly-
morphisms may contribute to susceptibility to 
air pollution–related outcomes.

We conducted a longitudinal panel study 
of elderly Koreans to estimate the effects of air 
pollutants on fasting blood levels of glucose 
and insulin and the homeostatic model assess-
ment (HOMA) index of IR, and evaluated 
effect modification by GSTM1, GSTT1, and 
GSTP1 genotypes. We obtained air monitor-
ing data from the Korea National Institute of 
Environmental Research.

Materials and Methods
Study population and sampling. The Korean 
Elderly Environmental Panel (KEEP) study 
was launched in March 2008 to explore rela-
tionships between environmental exposures 
and health outcomes in the elderly. From its 
start to 2010, the KEEP study recruited a total 
of 560 persons ≥ 60 years of age at their first 
visit. Participants completed a medical exami-
nation at a community elderly welfare center 
in the Seongbuk-Gu area of Seoul, Korea, up 
to five times during the study period (twice in 
2008, once in 2009, and twice in 2010), and 

provided up to three fasting blood samples 
(≤ 1/year). All serum samples were placed at 
–70°C immediately after collection and stored 
until analyzed for glucose and insulin. Trained 
interviewers also obtained detailed information 
from participants using a structured question-
naire including demographics, lifestyle habits, 
and medical history. The study protocol was 
approved by the institutional review board at 
Seoul National University Hospital, Seoul, 
Republic of Korea (ROK) and each study par-
ticipant provided written informed consent.

Air pollution concentrations and outdoor 
temperature. Ambient air pollutant [i.e., par-
ticulate matter ≤ 10 µm in diameter (PM10), 
sulfur dioxide (SO2), ozone (O3), and NO2] 
concentration data were obtained from the 
Korea National Institute of Environmental 
Research, Incheon, ROK. Air pollutant con-
centrations measured at the monitoring cen-
ter nearest to the residence of each subject 
were used to estimate individual exposures 
to ambient pollutants. The average distance 
between monitoring sites and individual 
residences was < 1 km. Air pollutant expo-
sure measures were computed as daily mean 
concentrations on the day of the study visit 
(lag 0) and on each of the 10 days before 
the visit (lag 1 through lag 10). Daily aver-
age outdoor temperature and dew point data 
measured at the Songwol-dong monitoring 
center nearest to each participant’s residence 
were obtained from the Korea Meteorological 
Administration, Seoul, ROK.

Glucose and insulin. IR is characterized 
by elevated serum insulin concentrations in 
association with a normal or high fasting glu-
cose concentration in serum. Therefore, we 
measured fasting glucose and insulin levels in 
serum collected on health examination days 
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Background: Previous studies have suggested that diabetes mellitus (DM) is an outcome of 
exposure to air pollution, and metabolic detoxification genes affect air pollution–related outcomes.

Objectives: We evaluated associations between air pollutants and markers of insulin resistance (IR), 
an underlying mechanism of type 2 DM, and effect modification by GSTM1, GSTT1, and GSTP1 
genotypes among elderly participants in the Korean Elderly Environmental Panel (KEEP) study.

Methods: We recruited 560 people ≥ 60 years of age and obtained blood samples from them up 
to three times between 2008 and 2010. For air pollution exposure, we used ambient air pollutant 
[i.e., particulate matter ≤ 10 µm in diameter (PM10), sulfur dioxide (SO2), ozone (O3), and nitrogen 
dioxide (NO2)] monitoring data. We measured levels of fasting glucose and insulin and derived 
the homeostatic model assessment (HOMA) index to assess IR. Mixed-effect models were used to 
estimate associations between air pollutants and IR indices on the same day or lagged up to 10 days 
prior, and effect modification by GSTM1, GSTT1, and GSTP1 genotypes.

Results: Interquartile range increases in PM10, O3, and NO2 were significantly associated with IR 
indices, depending on the lag period. Associations were stronger among participants with a history 
of DM and among those with GSTM1-null, GSTT1-null, and GSTP1 AG or GG genotypes.

Conclusions: Our results suggest that PM10, O3, and NO2 may increase IR in the elderly, and 
that GSTM1-null, GSTT1-null, and GSTP1 AG or GG genotypes may increase susceptibility to 
potential effects of ambient air pollutants on IR.
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to evaluate IR and impaired glucose tolerance. 
Briefly, glucose levels were determined by the 
hexokinase method using a Pureauto S GLU 
kit (Daiichi Pure Chemicals, Tokyo, Japan), 
and insulin levels were determined by radio
immunoassay with the double-antibody batch 
method using Elecsys Insulin and Elecsys 
2010 Immunoanalyser (both from Roche 
Diagnostics, Mannheim, Germany). We 
also calculated the HOMA as an index of IR 
according to the following equation: fasting 
insulin (in microunits per milliliter) × [fast-
ing glucose (in millimoles per liter) ÷ 22.5] 
(Matthews et al. 1985).

Cotinine. Urinary cotinine levels for moni-
toring tobacco exposure were measured in sam-
ples obtained during the same study visits as 
the fasting blood samples. Cotinine levels were 
analyzed by an enzyme-linked immunosorbent 
assay (ELISA) method based upon the com-
petitive binding to antibody of enzyme labeled 
antigen and unlabeled antigen (Cotinine Elisa; 
Bio-Quant, San Diego, CA, USA) following 
the manufacturer’s recommended procedure.

GSTM1, GSTT1, and GSTP1 genotyping. 
Genomic DNA was extracted from peripheral 
blood lymphocytes using a QIAamp DNA 
Blood Mini Kit (Qiagen, Valencia, CA, USA), 
and genetic polymorphisms of GSTM1, 
GSTT1, and GSTP1 were determined using a 
multiplex polymerase chain reaction method 
(Kim et  al. 2006). Identical results were 
obtained when genotyping was repeated in a 
10% random sample.

GSTP1 polymorphism (rs1695) frequen-
cies of 0.66 (n = 359), 0.31 (n = 171), and 0.03 
(n = 18) for the AA, AG, and GG genotypes 
were consistent with the Hardy–Weinberg 
equilibrium (p > 0.05 by chi-square test).

Statistical analysis. We estimated the 
effects of each pollutant on glucose, insulin, 
and HOMA indices using individual linear 
mixed-effect models for repeated measures 
analysis after adjusting for age, sex, body mass 
index [BMI; weight (in kilograms) ÷ height 
(in meters squared)], cotinine level, and out-
door temperature and dew point of the day. 
All covariates other than sex were modeled as 
continuous variables. In addition, we fit two- 
and three-pollutant models to assess potential 
confounding by co-pollutants. We estimated 
delayed effects of air pollutants on IR indices 
using individual daily average lag structures 
up to 10 days before the health examination, 
and estimated accumulated effects of air pol-
lutants over multiday lag periods (0–1 days, 
0–2 days,  .  .  . 0–10 days) using an uncon-
strained distributed lag model. Because IR is a 
risk factor for DM, the effects of each air pol-
lutant on IR indices were estimated separately 
according to DM history.

Associations between air pollutants and 
glucose, insulin, and HOMA indices were 
also estimated according to GSTM1, GSTT1, 

and GSTP1 genotypes. To ascertain the inter
actions between gene and air pollution on 
IR indices, interaction p-values for term air 
pollutants × genotypes were estimated in the 
same model. A penalized regression spline of 
exposure to air pollutants on glucose, insulin, 
and HOMA indices by genotypes was evalu-
ated using generalized additive mixed models 
to ascertain whether associations between air 
pollutants and IR indices according to geno-
types were linear.

The number of repeated measurements 
varied among participants, which may have 
led to selection bias if the loss to follow-up 
was not random (Rubin 1976). Therefore, 
we conducted all analyses after weight-
ing follow-up observations by the inverse 
probability of attaining a follow-up response 
(Robins et al. 1995). For participants who 
completed > 1 visit, we used logistic regression 
to predict the probability of a follow-up visit 
(follow-up = 1, missing = 0) according to age, 
sex, BMI, number of years of schooling, blood 
pressure, season, and outdoor temperature at 
the prior visit. The first observation for each 
participant was given a weight of 1, and more 
weight (the inverse of the predicted probability 
of having a follow-up response) was assigned 
to subsequent observations that were more 
likely missing.

SAS version 9.2 (SAS Institute Inc., 
Cary, NC, USA) and R version 2.12.1 

[Comprehensive R Archive Network (http://
cran.r-project.org)] were used for statistical 
analyses. Alpha level for statistical significance 
was 0.05.

Results
At baseline, there was a total of 560 par-
ticipants ≥ 60 years of age, of whom 146 
(26.1%) were male and 414 (73.9%) were 
female (Table 1). The mean number of visits 
was 3.3, with more visits among females than 
males (3.4 vs. 3.1 visits, p = 0.04). BMI and 
serum insulin levels were significantly higher 
in females than males (p = 0.02 and p = 0.047, 
respectively). A history of DM, hypertension, 
or hyperlipidemia was reported by 91 (16.3%), 
285 (50.9%), and 183 (32.7%) participants, 
respectively. Blood samples for genotyping 
were available for 548 participants.

Participants completed a total of 1,850 
individual health examinations. We estimated 
each participant’s exposures to air pollutants 
using air monitoring data for the visit day 
and the 10 days prior to each health exam-
ination during the study period (Table 2). 
Exposures to PM10, SO2, O3, and NO2 aver-
aged over the visit day through lag day 10 
were 42.58 µg/m3, 3.80 ppb, 19.38 ppb, and 
35.13 ppb, respectively. Mean outdoor tem-
perature and dew point values on the health 
examination days were 17.24°C and 6.78°C, 
respectively. Average exposures on each lag 

Table 1. Baseline characteristics of participants by sex.

Characteristic Male Female Total
Participants [n (%)] 146 (26.1) 414 (73.9) 560 (100)
Visits (mean ± SD) 3.1 ± 1.3 3.4 ± 1.4 3.3 ± 1.4
Age [mean (range)] 71.4 (62–84) 70.5 (60–87) 70.7 (60–87)
Height (cm; mean ± SD) 164.3 ± 5.3 151.3 ± 5.1 154.7 ± 5.1
Weight (kg; mean ± SD) 65.7 ± 9.8 57.1 ± 7.4 59.3 ± 8.1
BMI [kg/m2; n (%)]

≥ 30 5 (3.4) 19 (4.6) 24 (4.3)
25 to < 30 51 (34.9) 168 (45.2) 219 (39.1)
< 25 90 (61.7) 227 (54.8) 317 (56.6)

Current smokers [n (%)] 31 (21.2) 1 (0.2) 32 (5.7)
Glucose (fasting levels in serum) 5.42 ± 1.15 5.32 ± 1.13 5.34 ± 1.14

[mmol/L; mean ± SD (range)] (3.50 – 10.99) (3.89 – 16.32) (3.50 – 16.32)
Insulin (fasting levels in serum) 6.15 ± 4.58 7.14 ± 6.41 6.88 ± 5.99

[μU/mL; mean ± SD (range)] (0.70 – 28.00) (0.90 – 76.30) (0.70 – 76.30)
HOMA 1.54 ± 1.31 1.76 ± 1.84 1.70 ± 1.72

[mean ± SD (range)] (0.15 – 7.39) (0.22 – 21.46) (0.15 – 21.46)
Disease history [n (%)]

DM 25 (4.5) 66 (11.8) 91 (16.3)
Hypertension 76 (52.1) 209 (50.5) 285 (50.9)
Hyperlipidemia 47 (32.2) 136 (32.9) 183 (32.7)

Participants for whom DNA samples were obtained [n (%)] 142 (97.3) 406 (98.1) 548 (97.9)
GSTM1

Present 64 (45.1) 172 (42.4) 236 (43.1)
Null 78 (54.9) 234 (57.6) 312 (56.9)
GSTT1

Present 72 (50.7) 193 (47.5) 265 (48.4)
Null 70 (49.3) 213 (52.5) 283 (51.6)
GSTP1 (rs1695)

AA 90 (63.4) 269 (66.3) 359 (65.5)
AG 47 (33.1) 124 (30.5) 171 (31.2)
GG 5 (3.5) 13 (3.2) 18 (3.3)

The HOMA index uses the formula described by Matthews et al. (1985): insulin (μU/mL) × [glucose (mmol/L) ÷ 22.5].
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day were similar to average exposures on 
other lag days [see Supplemental Material, 
Figure  S1 (http://dx.doi.org/10.1289/
ehp.1104406)] and average air pollutant levels 
on health examination days were correlated 
(all p-values < 0.0001) (see Supplemental 
Material, Table S1).

We used linear mixed-effect models to 
estimate the effects of PM10, SO2, O3, and 
NO2 on glucose, insulin, and HOMA indices 
for each individual lag day after adjusting for 
age, sex, BMI, cotinine level, outdoor tem-
perature, and dew point, with weights applied 
to account for loss to follow-up. Significant 
associations with HOMA were observed for 
interquartile range (IQR) increases in PM10, 
O3, and NO2, with the strongest associa-
tions observed on lag day 4 for PM10 [0.14 
increase in HOMA; 95% confidence inter-
val (CI): –0.003, 0.29; p-value  =  0.05], 
lag day  5 for O3 (0.30; CI: 0.06, 0.53; 
p-value = 0.01), and lag day 7 for NO2 (0.28; 
CI: 0.13, 0.42; p-value = 0.0002) [Figure 1; 
see also Supplemental Material, Table S2 

(http://dx.doi.org/10.1289/ehp.1104406)]. 
Glucose and insulin showed similar trends 
with HOMA except for no association 
between PM10 and insulin. SO2 was not sig-
nificantly associated with the HOMA and 
insulin indices for any lag, but was signifi-
cantly associated with fasting glucose on lag 
days 3, 7, and 8. Even though effect estimates 
for SO2 and HOMA and insulin look very 
similar to those for PM10, the relationship 
between SO2 and HOMA was not significant 
for any lag. Therefore, we further analyzed 
only for PM10, O3, and NO2.

Multiple-pollutant models were gener-
ally consistent with single-pollutant models. 
Estimates for NO2 in the three-pollutant 
model appeared similar with those in the 
single-pollutant model (0.07 for glucose; 
CI: 0.01, 0.14; 0.67 for insulin; CI: 0.23, 
1.11; and 0.24 for HOMA; CI: 0.09, 0.39). 
Estimates for NO2 in the two-pollutant 
model also appear similar with those in the 
single-pollutant model and in the three-
pollutant model (all p-values < 0.01). PM10 

in the two-pollutant model showed consis-
tent and significant association with glucose 
level with marginal significance in the three-
pollutant model although there was no asso-
ciation with insulin or HOMA (0.08 after 
controlling for O3; CI: 0.01, 0.14; 0.08 after 
controlling for NO2; CI: 0.02, 0.15; and 0.06 
after controlling for O3 and NO2; CI: –0.005, 
0.12), and O3 showed at least marginally sig-
nificant association with all IR indices after 
controlling for PM10 (0.15 for glucose; CI: 
0.05, 0.25; 0.67 for insulin; CI: –0.06, 
1.39; and 0.25 for HOMA; CI: –0.001, 
0.49) [see Supplemental Material, Table S3 
(http://dx.doi.org/10.1289/ehp.1104406)]. 
Accumulated effects of IQR increases in 
pollutants estimated using a distributed lag 
model were strongest for lag 0–10 for PM10 
(0.25 for HOMA; CI: –0.49, 0.99), lag 0–5 
for O3 (0.35 for HOMA; CI: –0.36, 1.07), 
and lag 0–8 for NO2 (0.61 for HOMA; CI: 
0.03, 1.18), although associations were not 
statistically significant for PM10 and O3, (see 
Supplemental Material, Figure S2). SO2 did 
not appear to be associated with the three 
IR indices based on distributed lag models.

Associations were estimated separately 
among participants without and with a his-
tory of DM (Table 3). Associations were more 
apparent among participants with a history 
of DM.

We estimated changes in fasting glucose, 
insulin, and HOMA associated with IQR 
increases in PM10, O3, and NO2 by geno-
type (Table 4). Associations were stronger in 

Table 2. Distribution of air pollutant levels over 11 days, including each health examination day.

Air pollutant n Mean ± SD

Selected percentiles

10th 25th 50th 75th 90th 95th
PM10 (µg/m3) 1,850 42.58 ± 16.81 23.08 29.92 39.94 50.75 68.12 79.51
SO2 (ppb) 1,850 3.80 ± 1.45 2.43 2.72 3.27 4.35 5.99 6.94
O3 (ppb) 1,850 19.38 ± 7.96 8.99 11.58 19.34 26.67 29.56 31.33
NO2 (ppb) 1,850 35.13 ± 8.46 24.09 28.51 35.23 39.30 45.78 48.16
Outdoor temperature (°C) 1,906 17.24 ± 8.57 3.73 11.27 18.62 24.87 26.48 26.75
Dew point (°C) 1,906 6.78 ± 10.19 –7.58 –1.91 7.45 16.73 19.52 20.04

Exposures to air pollutants and meteorological elements were averaged over the visit day through lag day 10.

Figure 1. Associations of PM10, SO2, O3, and NO2 with glucose, insulin, and HOMA indices according to lag day. Changes in glucose, insulin, and HOMA indices 
by an IQR change of PM10 (20.8 µg/m3), SO2 (1.6 ppb), O3 (15.1 ppb), and NO2 (10.8 ppb) were estimated in linear mixed-effect models after weighting follow-up 
observations and adjusting for age, sex, BMI, cotinine level, and outdoor temperature and dew point of the day. For details, see Supplemental Material, Table S2, 
(http://dx.doi.org/10.1289/ehp.1104406).
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participants with GSTM1-null, GSTT1-null, 
or GSTP1 AG or GG genotypes compared 
with those with GSTM1 present, GSTT1 
present, or GSTP1 AA genotypes, although 
the interaction p-values were not always sta-
tistically significant. We also estimated asso-
ciations according to the number of “at-risk” 
genotypes (defined as GSTM1-null, GSTT1-
null, and GSTP1 AG or GG genotypes) using 
linear mixed models or generalized additive 
mixed models, and found stronger associations 
between air pollutants and IR indices among 

those with 2–3 at-risk genotypes compared 
with only 0–1 and nonlinear association, par-
ticularly when those with 2–3 risky genotypes 
were exposed to PM10 (Table 4, Figure 2).

We compared estimates and statistical sig-
nificance before and after weighting follow-up 
observations to evaluate potential selection 
bias, and before and after adjusting for hyper-
tension and hyperlipidemia to evaluate possible 
confounding due to preexisting conditions that 
could be related to air pollution exposure and 
IR, and found no difference (data not shown).

Discussion
Our findings suggest associations of the air 
pollutants PM10, O3, and NO2 with fasting 
glucose, insulin, and HOMA index values in 
the elderly and that participants with GSTM1-
null, GSTT1-null, and GSTP1 AG or GG 
genotypes may be more susceptible to effects 
of air pollution on IR.

Several studies have explored potential 
effects of air pollution on DM. A case–control 
study reported that exposure to PM10 was sig-
nificantly higher for 61 children diagnosed 

Table 3. Estimated associations for exposure to PM10, O3, and NO2 with fasting glucose, insulin, and HOMA indices in subjects without and with a history of DM.

Pollutant

Glucose Insulin HOMA

Estimate (95% CI) p-Value Estimate (95% CI) p-Value Estimate (95% CI) p-Value
Total (n = 560)

PM10 0.11 (0.05, 0.17) 0.0005 0.21 (–0.22, 0.64) 0.3439 0.14 (–0.003, 0.29) 0.0549
O3 0.19 (0.09, 0.28) 0.0001 0.71 (0.02, 1.39) 0.0439 0.30 (0.06, 0.53) 0.0139
NO2 0.11 (0.05, 0.17) 0.0004 0.72 (0.29, 1.14) 0.0010 0.28 (0.13, 0.42) 0.0002

Without history of DM (n = 469)
PM10 0.05 (0.01, 0.10) 0.0112 –0.14 (–0.58, 0.29) 0.5198 –0.03 (–0.17, 0.11) 0.7102
O3 0.09 (0.02, 0.16) 0.0080 0.32 (–0.39, 1.03) 0.3766 0.12 (–0.11, 0.35) 0.3097
NO2 0.05 (0.004, 0.09) 0.0320 0.48 (0.06, 0.91) 0.0275 0.16 (0.02, 0.30) 0.0222

With history of DM (n = 91)
PM10 0.43 (0.15, 0.70) 0.0030 2.27 (0.91, 3.64) 0.0016 1.15 (0.63, 1.66) < 0.0001
O3 0.68 (0.28, 1.08) 0.0012 2.78 (0.79, 4.78) 0.0077 1.22 (0.44, 2.00) 0.0028
NO2 0.55 (0.27, 0.83) 0.0003 2.78 (1.40, 4.17) 0.0002 1.22 (0.68, 1.75) < 0.0001

p-Values obtained after weighting follow-up observations in the single-pollutant model of PM10, O3, and NO2 on lag day 4, lag day 5, and lag day 7, respectively. Changes in glucose, insulin, 
and HOMA indices by an IQR-change of PM10 (20.8 µg/m3), O3 (15.1 ppb), and NO2 (10.8 ppb) were obtained after adjusting for age, sex, BMI, cotinine level, and outdoor temperature and 
dew point of the day.

Table 4. Associations of PM10, O3, and NO2 with fasting glucose, insulin, and HOMA indices by GSTM1, GSTT1, and GSTP1 genotypes.

Gene/genotype Pollutant n

Glucose Insulin HOMA

Estimate (95% CI) p-Value
p for 

interaction Estimate (95% CI) p-Value
p for 

interaction Estimate (95% CI) p-Value
p for 

interaction
GSTM1

Present PM10 225 0.04 (–0.04, 0.13) 0.3019 0.0459 0.19 (–0.25, 0.64) 0.3990 0.6201 0.12 (–0.04, 0.28) 0.1488 0.4944
O3 225 0.04 (–0.10, 0.18) 0.6027 0.0112 0.19 (–0.55, 0.93) 0.6140 0.2934 0.08 (–0.18, 0.34) 0.5552 0.1647
NO2 225 0.06 (–0.02, 0.15) 0.1579 0.2187 0.14 (–0.30, 0.58) 0.5278 0.0054 0.10 (–0.06, 0.25) 0.2308 0.0137

Null PM10 299 0.17 (0.09, 0.25) 0.0001 0.33 (–0.35, 1.02) 0.3430 0.20 (–0.03, 0.43) 0.0894
O3 299 0.30 (0.17, 0.42) < 0.0001 1.14 (0.08, 2.19) 0.0351 0.47 (0.11, 0.83) 0.0102
NO2 299 0.14 (0.06, 0.22) 0.0006 1.27 (0.59, 1.94) 0.0003 0.45 (0.22, 0.68) 0.0002

GSTT1
Present PM10 254 0.05 (–0.03, 0.12) 0.2449 0.1166 0.17 (–0.41, 0.75) 0.5649 0.8711 0.06 (–0.10, 0.22) 0.4812 0.3609

O3 254 0.08 (–0.03, 0.19) 0.1687 0.0151 0.59 (–0.29, 1.47) 0.1875 0.8825 0.15 (–0.09, 0.40) 0.2231 0.4358
NO2 254 0.02 (–0.05, 0.08) 0.6524 0.0020 0.44 (–0.07, 0.96) 0.0908 0.0463 0.11 (–0.03, 0.25) 0.1338 0.0028

Null PM10 270 0.15 (0.07, 0.24) 0.0008 0.21 (–0.41, 0.83) 0.5030 0.20 (–0.03, 0.43) 0.0926
O3 270 0.29 (0.15, 0.44) 0.0001 0.77 (–0.27, 1.81) 0.1490 0.42 (0.03, 0.81) 0.0360
NO2 270 0.21 (0.12, 0.31) < 0.0001 1.08 (0.41, 1.76) 0.0019 0.49 (0.24, 0.75) 0.0002

GSTP1
AA PM10 345 0.09 (0.03, 0.15) 0.0052 0.9598 0.06 (–0.47, 0.59) 0.8326 0.7265 0.05 (–0.13, 0.23) 0.5758 0.3947

O3 345 0.08 (–0.02, 0.17) 0.1029 0.0006 0.15 (–0.07, 0.97) 0.7215 0.0205 0.06 (–0.22, 0.34) 0.6762 0.0036
NO2 345 0.08 (0.02, 0.14) 0.0077 0.3620 0.75 (0.24, 1.26) 0.0042 0.3848 0.26 (0.09, 0.43) 0.0034 0.4972

AG or GG PM10 179 0.12 (0.001, 0.24) 0.0503 0.47 (–0.26, 1.20) 0.2099 0.29 (0.04, 0.54) 0.0250
O3 179 0.40 (0.20, 0.60) 0.0001 1.79 (0.58, 3.01) 0.0044 0.74 (0.32, 1.17) 0.0007
NO2 179 0.14 (0.02, 0.27) 0.0230 0.70 (–0.05, 1.44) 0.0695 0.30 (0.04, 0.56) 0.0235

At-risk genotypea
0–1 PM10 282 0.08 (0.005, 0.15) 0.0382 0.6077 0.04 (–0.37, 0.45) 0.8377 0.3584 0.06 (–0.07, 0.18) 0.3853 0.2277

O3 282 0.05 (–0.06, 0.17) 0.3625 0.0003 –0.06 (–0.69, 0.57) 0.8633 0.0860 –0.01 (–0.20, 0.19) 0.9379 0.0244
NO2 282 0.05 (–0.02, 0.12) 0.1832 0.0358 0.32 (–0.05, 0.69) 0.0943 0.0135 0.11 (–0.001, 0.23) 0.0528 0.0030

2–3 PM10 242 0.13 (0.03, 0.22) 0.0080 0.38 (–0.39, 1.15) 0.3388 0.23 (–0.04, 0.59) 0.1017
O3 242 0.35 (0.20, 0.50) < 0.0001 1.47 (0.19, 2.74) 0.0253 0.61 (0.16, 1.06) 0.0089
NO2 242 0.19 (0.09, 0.29) 0.0003 1.28 (0.45, 2.11) 0.0027 0.51 (0.22, 0.81) 0.0006

p-Values obtained after weighting follow-up observations in the single-pollutant model of PM10, O3, and NO2 on lag day 4, lag day 5, and lag day 7, respectively. Changes in glucose, insulin, 
and HOMA indices by an IQR-change of PM10 (20.8 µg/m3), O3 (15.1 ppb), and NO2 (10.8 ppb) were obtained after adjusting for age, sex, BMI, cotinine level, and outdoor temperature and 
dew point of the day.
aNumber of risky genotypes.
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with DM compared with 39 controls (Hathout 
et al. 2002). Brook et al. (2008) studied the 
relationship between DM and exposures to 
traffic pollution using NO2 measurements, and 
they reported a statistically significant increase 
of 17% in DM with a 4-ppb increase in NO2 
exposure among women, but not among men. 
DM-related mortality has also been associ-
ated with PM, SO2, and NO2 exposures (Kan 
et al. 2004; Maynard et al. 2007; Ostro et al. 
2006). Several studies have reported positive 
associations between PM ≤ 2.5 µm in diameter 
(PM2.5) and insulin or other IR-related indices 
such as whole-body IR, systemic inflamma-
tion, and visceral adiposity (Kelishadi et al. 
2009; Sun et al. 2009) and evidence of effect 
modification by impaired glucose homeostasis 
of associations between PM10 and heart rate 
variability (Whitsel et al. 2009). Because DM 
and metabolic syndrome are chronic inflam-
matory states, air pollution, which is known 
to increase systemic and adipose tissue inflam-
mation (Pope et al. 2004; Sun et al. 2009; van 
Eeden et al. 2001), could induce or exaggerate 
IR (Sun et al. 2009). A population-based study 
of 374 children 10–18 years of age supported 
the air pollution effect by showing an associa-
tion of air quality with C-reactive protein and 
HOMA index values (Kelishadi et al. 2009). 

Animal studies have also shown that particulate 
air pollution exposure increases IR, and reac-
tive oxygen species mediate this increased risk 
of IR (Sun et al. 2009; Xu et al. 2010). We 
found positive associations of PM10, O3, and 
NO2 with fasting glucose, insulin, and HOMA 
indices, indicating that these pollutants may 
affect the development of DM. In addition, 
we found differences in the time windows of 
apparent effects. Ozone appeared to have a 
more acute effect compared with PM10 and 
NO2 (lag days 0–5 vs. 0–10 and 0–8, respec-
tively). However in this study, we did not find 
evidence of associations between SO2 and the 
IR indices. The main sources of SO2 have been 
known to be combustion in energy and trans-
formation industries, whereas the main source 
of PM10, O3, and NO2 is road-transport 
related, although the contribution of different 
sources varies between and within countries. 
Therefore PM10, O3, and NO2, but not SO2, 
are likely markers of traffic in the study area.

The majority of the literature to date sug-
gests that DM functions as an effect modifier 
on the relationship between exposure to air pol-
lution and cardiovascular outcome, as opposed 
to being a direct consequence of exposure 
(Zanobetti and Schwartz 2001, 2002). Other 
researchers have reported stronger associations 

between air pollution exposure and cardiovas-
cular hospitalizations or emergency room visits 
among persons with DM compared with those 
without DM (Peel et al. 2007; Pereira Filho 
et al. 2008). In our study, associations between 
PM10, O3, and NO2 and IR indices remained 
even after excluding subjects with a history 
of DM although air pollutants had a stronger 
effect on IR in these subjects. Research has sug-
gested that inflammatory mechanisms exacer-
bate the impact of air pollution among persons 
with DM. In our study, a change in glucose 
level associated with a change of PM10, O3, 
and NO2 in subjects with a history of DM was 
larger than in those without a history of DM. 
Although a comparison between our results 
and those of previous studies is difficult because 
of the different outcomes, participants with 
DM appeared to be more susceptible to the 
apparent effects of air pollutant exposures on 
the IR indices than were those without DM.

We therefore hypothesized that insulin sig-
naling and downstream pathways may mediate 
the effect of air pollution on chronic diseases, 
including DM. Recently, Sun et al. (2009) 
demonstrated that ambient PM2.5 potentiated 
the effect of obesity on IR in a diet-induced 
murine model of obesity. Their results suggest 
that the previously observed link between PM 

Figure 2. Penalized regression spline of exposure to PM10 (A), O3 (B), and NO2 (C) on lag day 4, lag day 5, and lag day 7, respectively, on glucose (top), insulin (cen-
ter), and HOMA (bottom) indices by 0–1 (left) or 2–3 (right) risky genotypes. Solid lines, spline curve; shaded area, 95% CI. The curves are adjusted for age, sex, 
BMI, cotinine level, and outdoor temperature and dew point of the day.
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and DM may be mediated through IR and 
visceral inflammation due to PM (Brook et al. 
2008; Chen and Schwartz 2008). Knuckles 
and Dreher (2007) studied changes in tran-
scription and translation in rat neonatal cardio
myocyte cultures after an acute exposure to 
bioavailable constituents of PM2.5 oil combus-
tion particles. Genomic alterations observed 
included changes in insulin/insulin-like growth 
factor 1 (IGF-1) and phosphatidylinositol-3 
(PI3)/serine/threonine specific protein kinase 
(Akt) signaling, which suggest the involvement 
of insulin in the response to the particles within 
cardiomyocytes. Diesel exhaust emissions can 
activate redox-sensitive transcription factors, 
including nuclear factor kappa-B (NF-kB) and 
activator protein 1 (AP1), both of which have 
been linked to insulin/IGF-1 signaling. The 
PI3/AKT pathway, which is in part regulated 
by insulin/IGF-1 signaling, plays a key role in 
cell cycle progression (Liang and Slingerland 
2003), although the detailed mechanisms are 
still poorly understood.

An individual’s susceptibility to IR con-
ferred by air pollution exposure could vary 
depending on genetic factors (Minelli et al. 
2011). Because air pollution exposure induces 
oxidative stress, which is known to medi-
ate development of IR, genes modulating 

oxidative stress are good candidates for inves-
tigating gene × air pollution interactions 
(Minelli et al. 2011). GSTM1, GSTT1, and 
GSTP1 defend against oxidative stress by con-
jugating reactive oxygen species with glutathi-
one, which detoxifies and eliminates them. O3 
is a strong oxidant that exerts its action either 
by direct reaction with target molecules or by 
generating reactive oxygen species (Romieu 
et al. 2010). NO2 is directly involved in pul-
monary inflammation and contributes to reac-
tive oxygen species indirectly by the formation 
of O3 (Romieu et al. 2010). Oxidative stress 
is also produced by enzymatically catalyzed 
reactions in target cells by organic chemicals 
and transition metals bound to the surfaces 
of PM (Bae et al. 2010). We found that esti-
mated effects of PM10, O3, and NO2 on the 
IR indices were stronger in participants with 
GSTM1- or GSTT1-null genotypes or an AG 
or GG genotype of GSTP1 and that asso-
ciations were stronger in participants with 
more than one at-risk genotype of GSTM1, 
GSTT1, or GSTP1. These findings suggest 
that the capacity to scavenge oxygen free radi-
cals induced by air pollution exposure is dif-
ferent depending on genetic polymorphisms 
of GSTM1, GSTT1, and GSTP1. Because 
age-related diseases are increasing as a result 

of changes in lifestyle and environment and 
because genetic factors may influence the 
development of age-related diseases (Perls 
2006), gene × environmental interactions 
should also be considered when studying air 
pollution–related health effects in the elderly.

The study of genetic susceptibility can 
clarify air pollution pathophysiological mecha-
nisms and help identify susceptible popula-
tions that should be targets of public health 
interventions. Enhancing antioxidant defenses, 
such as antioxidant supplementation in sus-
ceptible persons, could be a potentially preven-
tive measure (Minelli et al. 2011). In addition, 
air quality standards based on average effects 
in the population as a whole should be revised 
to protect genetically susceptible populations 
(Minelli et al. 2011).

To the best of our knowledge, this is the 
first epidemiological study to investigate the 
role of genetic polymorphisms in the effects 
of outdoor exposure to air pollutants on IR. 
However, there were some limitations to this 
study. We recruited subjects ≥ 60 years of age; 
if age modifies the effect of air pollution on IR, 
our results may not be generalizable to younger 
people. We did not precisely measure each 
individual’s exposure level to ambient air pol-
lutants; instead, we used monitoring data for 
the site nearest to their home. Because most of 
the elderly subjects were not employed, expo-
sure assignment based on the residential address 
of subjects was reasonable although exposure 
misclassification cannot be completely ruled 
out. Moreover, such an error is likely to be 
nondifferential, which generally shifts the asso-
ciations toward the null. We also did not adjust 
for socioeconomic status even though socio
economic status may be a potentially impor-
tant confounder of the association between air 
pollution exposure and DM. Individual expo-
sure to other pollutants or other confounding 
factors could have biased the results if they had 
increased concomitantly with the measured 
air pollution levels; however, the possibility of 
this scenario is low. Although we adjusted for 
other potential risk factors for IR—specifically 
age, sex, smoking, and BMI—concomitant 
exposure to other pollutants, such as volatile 
organic chemicals or heavy metals, could also 
have had some impact on IR.

Conclusion
Overall, short-term exposure to air pollution 
was significantly associated with markers of IR 
in our elderly study population. In addition, 
participants with GSTM1-null, GSTT1-null, 
and GSTP1 AG or GG genotypes showed 
stronger associations between IR mark-
ers and exposure to air pollution, suggesting 
genetic susceptibility. These findings shed new 
light on the relationship among exposure to 
air pollutants, IR responses, and GST gene 
polymorphisms.

Figure 2. Continued.
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